.comment-link {margin-left:.6em;}

IVORY-BILLS  LiVE???!  ...

=> THE blog devoted to news and commentary on the most iconic bird in American ornithology, the Ivory-billed Woodpecker (IBWO)... and... sometimes other schtuff.
-------------------------------------------------------------------------------------------------------------------



Google
 
Web ivorybills.blogspot.com

"....The truth is out there."

-- Dr. Jerome Jackson, 2002 (... & Agent Fox Mulder)

“There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.”

-- Hamlet

"All truth passes through 3 stages: First it is ridiculed. Second, it is violently opposed. Third, it is accepted as self-evident."

-- Arthur Schopenhauer






Friday, November 30, 2007

 

-- Feynman On Science --

-------------------------------------------------------------------------------------

As we head into the weekend, just a lengthy quote from physicist Richard Feynman (from a speech to the National Science Teachers Association, 1966) starting off with a memory from his boyhood days....

"....The next day, Monday, we were playing in the fields and this boy said to me, "See that bird standing on the stump there? What's the name of it?"

I said, "I haven't got the slightest idea."

He said, "It’s a brown-throated thrush. Your father doesn't teach you much about science."

I smiled to myself, because my father had already taught me that the name doesn't tell me anything about the bird. He taught me "See that bird? It's a brown-throated thrush, but in Germany it's called a halsenflugel, and in Chinese they call it a chung ling and even if you know all those names for it, you still know nothing about the bird--you only know something about people; what they call that bird. Now that thrush sings, and teaches its young to fly, and flies so many miles away during the summer across the country, and nobody knows how it finds its way," and so forth. There is a difference between the name of the thing and what goes on.

The result of this is that I cannot remember anybody's name, and when people discuss physics with me they often are exasperated when they say "the Fitz-Cronin effect," and I ask "What is the effect?" and I can't remember the name.

I would like to say a word or two--may I interrupt my little tale--about words and definitions, because it is necessary to learn the words.

It is not science. That doesn't mean, just because it is not science, that we don't have to teach the words. We are not talking about what to teach; we are talking about what science is. It is not science to know how to change Centigrade to Fahrenheit. It's necessary, but it is not exactly science. In the same sense, if you were discussing what art is, you wouldn't say art is the knowledge of the fact that a 3-B pencil is softer than a 2-H pencil. It's a distinct difference. That doesn't mean an art teacher shouldn't teach that, or that an artist gets along very well if he doesn't know that. (Actually, you can find out in a minute by trying it; but that's a scientific way that art teachers may not think of explaining.)

In order to talk to each other, we have to have words, and that's all right. It's a good idea to try to see the difference, and it's a good idea to know when we are teaching the tools of science, such as words, and when we are teaching science itself.

To make my point still clearer, I shall pick out a certain science book to criticize unfavorably, which is unfair, because I am sure that with little ingenuity, I can find equally unfavorable things to say about others. There is a first grade science book which, in the first lesson of the first grade, begins in an unfortunate manner to teach science, because it starts off an the wrong idea of what science is. There is a picture of a dog--a windable toy dog--and a hand comes to the winder, and then the dog is able to move. Under the last picture, it says "What makes it move?" Later on, there is a picture of a real dog and the question, "What makes it move?" Then there is a picture of a motorbike and the question, "What makes it move?" and so on.

I thought at first they were getting ready to tell what science was going to be about--physics, biology, chemistry--but that wasn't it. The answer was in the teacher's edition of the book: the answer I was trying to learn is that "energy makes it move."

Now, energy is a very subtle concept. It is very, very difficult to get right. What I mean is that it is not easy to understand energy well enough to use it right, so that you can deduce something correctly using the energy idea--it is beyond the first grade. It would be equally well to say that "God makes it move," or "spirit makes it move," or "movability makes it move." (In fact, one could equally well say "energy makes it stop.")

Look at it this way: that’s only the definition of energy; it should be reversed. We might say when something can move that it has energy in it, but not what makes it move is energy. This is a very subtle difference. It's the same with this inertia proposition.

Perhaps I can make the difference a little clearer this way: If you ask a child what makes the toy dog move, you should think about what an ordinary human being would answer. The answer is that you wound up the spring; it tries to unwind and pushes the gear around.

What a good way to begin a science course! Take apart the toy; see how it works. See the cleverness of the gears; see the ratchets. Learn something about the toy, the way the toy is put together, the ingenuity of people devising the ratchets and other things. That's good. The question is fine. The answer is a little unfortunate, because what they were trying to do is teach a definition of what is energy. But nothing whatever is learned.

Suppose a student would say, "I don't think energy makes it move." Where does the discussion go from there?

I finally figured out a way to test whether you have taught an idea or you have only taught a definition.

Test it this way: you say, "Without using the new word which you have just learned, try to rephrase what you have just learned in your own language." Without using the word "energy," tell me what you know now about the dog's motion." You cannot. So you learned nothing about science. That may be all right. You may not want to learn something about science right away. You have to learn definitions. But for the very first lesson, is that not possibly destructive?

I think for lesson number one, to learn a mystic formula for answering questions is very bad. The book has some others: "gravity makes it fall;" "the soles of your shoes wear out because of friction." Shoe leather wears out because it rubs against the sidewalk and the little notches and bumps on the sidewalk grab pieces and pull them off. To simply say it is because of friction, is sad, because it's not science....

We have many studies in teaching, for example, in which people make observations, make lists, do statistics, and so on, but these do not thereby become established science, established knowledge. They are merely an imitative form of science analogous to the South Sea Islanders' airfields--radio towers, etc., made out of wood. The islanders expect a great airplane to arrive. They even build wooden airplanes of the same shape as they see in the foreigners' airfields around them, but strangely enough, their wood planes do not fly. The result of this pseudoscientific imitation is to produce experts, which many of you are. [But] you teachers, who are really teaching children at the bottom of the heap, can maybe doubt the experts. As a matter of fact, I can also define science another way: Science is the belief in the ignorance of experts.

When someone says, "Science teaches such and such," he is using the word incorrectly. Science doesn't teach anything; experience teaches it. If they say to you, "Science has shown such and such," you might ask, "How does science show it? How did the scientists find out? How? What? Where?"

It should not be "science has shown" but "this experiment, this effect, has shown." And you have as much right as anyone else, upon hearing about the experiments--but be patient and listen to all the evidence--to judge whether a sensible conclusion has been arrived at.

In a field which is so complicated [as education] that true science is not yet able to get anywhere, we have to rely on a kind of old-fashioned wisdom, a kind of definite straightforwardness. I am trying to inspire the teacher at the bottom to have some hope and some self-confidence in common sense and natural intelligence. The experts who are leading you may be wrong.

I have probably ruined the system, and the students that are coming into Caltech no longer will be any good. I think we live in an unscientific age in which almost all the buffeting of communications and television--words, books, and so on--are unscientific. As a result, there is a considerable amount of intellectual tyranny in the name of science..."


~ amen

--------------------------------------------------------------------------------------


Links to this post:

Create a Link



<< Home

This page is powered by Blogger. Isn't yours?

Older Posts ...Home